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Abstract

The exactness of hierarchical partitioning is fairly easy to intuit, but proving it is1

mildly more difficult. Using the ’port node’ intuition given in the main paper, the2

method to construct the proof becomes visible. We marginalize over a set of port3

nodes, and each sub-graph is marginalized over it’s port nodes plus the ones it4

shares in common, and so on.5

The existence of a message passing algorithm for this task is somewhat trivial,6

since if we have a cutset it’ll split the graph into trees, for which there is an7

exact algorithm. When implementing such an algorithm, just make sure you don’t8

marginalize over the same tree twice.9

A Exactness of sub-graph partitioned marginalization10

A.1 Definitions11

Definition 1 (Factor graph). A factor graph G = (F,X) is a bipartite graph representing a factoriza-12

tion of a joint probability distribution over a set of variables X . It consists of:13

• A set of variable nodes X = {x1, x2, . . . , xn} with domains Xxi
.14

• A set of factor nodes F = {ϕ1, ϕ2, ...ϕm} where ϕi : Ω(Θ(ϕi)) → R+.15

• A function Θ : F → P(X)1 that maps from a factor to the subset of variables it’s dependent16

on.17

Additionally, providing extra arguments to a factor doesn’t change it’s output:18

ϕ(x) = ϕ(y) : x ∈ Ω(X), y ∈ Ω(X ∪ Y )

Definition 2 (Instantiation). An instantiation is a mapping from a set of variablesX to one variable in19

each one’s domain. The function Ω returns a set of all possible instantiations given a set of variables.20

Ω(Y ) = {ω : (∀y ∈ Y, ω(y) ∈ Xy), (∀S ⊆ Y : ω[S] = {ω(s) : s ∈ S}}

An instantiation can map a variable to it’s assigned value ω(y), or map a set of variables to their21

assigned values ω(S)22

Definition 3 (Factorized joint distribution). Given a factor graph G, the joint distribution over X is23

given by PG : Ω(X) → [0, 1] where:24

1where P(X) is the power set of X
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ΦG(x) =
∏
ϕ∈F

ϕ(x)

Z =
∑

x∈Ω(X)

ΦG(x)

PG(x) = ΦG(x)/Z

The behavior when provided extra arguments is the same for a single factor:25

Proof. For y ∈ Ω(X ∪ Y ), x ∈ Ω(X)26

ΦG(y) =
∏
ϕ∈F

ϕ(y)

=
∏
ϕ∈F

ϕ(x)

= ΦG(x)

PG(y) = ΦG(y)/Z

= ΦG(x)/Z

= PG(x)

Definition 4 (Marginal distribution). Given a subset of variables A ⊆ X the marginal distribution of27

A is defined as:28

ψG,A(a) =
∑

x∈Ω(X\A)

ΦG(x ∪ a)

Z =
∑

a∈Ω(A)

ψG,A(a)

pG,A(a) = ψ(a)/Z

where a ∈ Ω(A)29

A.2 Sub-graph factorization30

A.2.1 Sub-graphs and near-disjoint-ness31

Definition 5 (Sub-graph of a factor graph). A sub-graph Ḡ = (X̄, F̄ ) of a factor graph G = (X,F )32

is a factor graph formed by a subset of variables X̄ ⊆ X and a subset of factors F̄ ⊆ F , such that33

every factor in F̄ is defined only on variables from X̄ .34

Definition 6 (Near-disjoint sub-graphs). A collection of sub-graphs {Ḡi = (X̄i, F̄i)}i of G is35

near-disjoint w.r.t. A if:36

⋃
i

F̄i = F

∀i ̸=j , F̄i ∩ F̄j = ∅
∀i̸=j , X̄i ∩ X̄j ⊆ A

The factor sets partition F . The sets of variables X̄i may share variables in A, but are otherwise37

disjoint38
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A.2.2 Sub-graph factorization39

Lemma 1 (Sub-Graph Joint Distribution Factorization). Suppose G = (X,F ) is a factor graph40

and {Ḡi = (X̄i, F̄i)}i is a collection of near-disjoint sub-graphs partitioning F . Then the joint41

distribution can be factorized:42

ΦG(x) =
∏
ϕ∈F

ϕ(x)

=
∏
i

∏
ϕ∈F̄i

ϕ(x) (assoc. & comm. mul.)

=
∏
i

ΦḠi
(x) (Def. 3)

Z =
∑
x∈X

ΦG(x)

PG(x) = ΦG(x)/Z

A.2.3 Marginalization with near-disjoint sub-graphs43

Lemma 2 (Generalized Distributive Law [1]). Let (K,
∑
,
∏
) be a commutative semiring. Let44

{Di}ki=1 be pairwise–disjoint finite sets and let fi : Di→K. Then45 ∑
(x1,...,xk)∈

∏k
i=1 Di

k∏
i=1

fi(xi) =

k∏
i=1

∑
xi∈Di

fi(xi)

"sum over the Cartesian product of products" equals "product of the individual sums"46

Theorem 1 (Marginal factorization). Given a subset A ⊆ X and a factor graph G = (X,F ) that47

partitions into near-disjoint sub-graphs {Ḡi = (X̄i, F̄i)}i that share variables only in A, the marginal48

distribution of A can be factorized as:49

ψG,A(a) =
∑

x∈Ω(X\A)

ΦG(x ∪ a) Def. 4

=
∑

x∈Ω(X\A)

∏
i

ΦḠi
(x ∪ a) Lem. 1

=
∑

x∈Ω(X\A)

∏
i

ΦḠi
(x[X̄i] ∪ a) Def. 2, 3, 6

=
∏
i

∑
xi∈Ω(Xi\A)

ΦḠi
(xi ∪ a) Lem. 2

=
∏
i

ψḠi,A(a) Def. 4

Z =
∑
a∈A

ψG,A(a)

pG,A(a) = ψG,A(a)/Z

The key insight is that because the sub-graphs Ḡi are near-disjoint except for A, the joint summation50

over X \ A factorizes into independent summations over each X̄i \ A. Each of these summations51

yields a marginal distribution ψḠi,A(a). Combining these pieces leads to the factorization of the52

marginal distribution into a product of sub-graph marginals.53

A.2.4 Hierarchical partitioning marginalization54

When a suitable partition of G is not immediately available (i.e., the graph remains connected even55

after removing A), introduce a new set of variables P such that for which P ∪A there is a partitioning56

of near-disjoint sub-graphs.57
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Definition 7 (Partition). This partition C is a set of variables that, when conditioned upon (i.e., fixed),58

partitions the factor graph into a collection of near-disjoint sub-graphs. Formally, if Q ⊆ X , then:59

ψG,A(a) =
∑

c∈Ω(C)

ψG,A∪C(a ∪ c).

The summation of a partition involves marginalizing w.r.t AC over a marginalized distribution60

over (A ∪ C)C . Partitions ensure that each sub-graph induced by Q ∪ C is near-disjoint, allowing61

factorization techniques to apply.62

Theorem 2 (Hierarchical factorization via partitions). Consider a factor graph G and a chosen63

partition C. If conditioning on Q ∪ C makes the sub-graphs near-disjoint, then:64

ψG,Q(q) =
∑

c∈Ω(C)

ψG,Q∪C(q ∪ c).

For a given partition, the sub-graphs can themselves be partitioned into near-disjoint sub-sub-graphs65

with independent partitioners. The partitioners unique to each sub-graph therefor can be summed out66

independently for each sub-graph.67

ψG,A(a) =
∏
i

ψḠi,A(a)

=
∏
i

ψḠi,A∪C̄i
(a)

=
∏
i

∑
c∈C̄i

ψḠi,A∪C̄i
(a ∪ c).

The summation
∑

c is where "summing out a sub-graph" comes from68

Proof. Applying the previous factorization theorems to each sub-graph yields the factorization into69

products of marginals. Introducing additional nested partitions C̄i for each sub-graph repeats the70

argument at a finer level of granularity, leading to hierarchical factorization similar to Anytime Exact71

Belief Propagation[2].72

B Existence of exact message passing sub-graph marginalization algorithm73

Definition 8 (Cycle Cutset Conditioning[3]). For any graph there exists a cutset on a factor graph74

such that belief propagation with an outer summation on the cutset is exact.75

ψG,A(a) = CCCG,A(a) =
∑

c∈Ω(C)

BPG,C∪A(c ∪ a)

Lemma 3 (Nested Factor Lemma). Marginalizing over a single factor defined as = ψḠi,A is76

equivalent to ψḠi,A77

By 1 as so long as the sub-graph marginalizations are exact, there exists an exact super-graph78

marginalization.79

ψG,A(a) =
∏
i

ϕ̄Ḡi,A

It can be shown that marginalizing over a single factor defined as = ψḠi,A is equivalent to ψḠi,A.80

ϕḠi,A(a) = ψḠi,A

ψ̄Ḡi,A(a) = ϕḠi,A(a)

= ψḠi,A(a)
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Theorem 3 (Hierarchical Cutset Conditioning). By 3 there exists an equivalent factor-graph for any81

sub-graph partitioning. And by 8 there exists a message passing algorithm for any marginalization82

over a factor-graph. Therefor, there exists an exact message passing algorithm between sub-graphs.83

Proof by induction.84

1. base case is regular cycle cutset conditioning (Def. 8)85

2. any sub-graph partitioning can be turned into a sub-graph factor-graph (Lem. 3)86

3. the cycle cutset conditioning algorithm can then be applied to the sub-graph factor graph87

and to the sub-graph factors.88
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