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Abstract

The exactness of hierarchical partitioning is fairly easy to intuit, but proving it is
mildly more difficult. Using the *port node’ intuition given in the main paper, the
method to construct the proof becomes visible. We marginalize over a set of port
nodes, and each sub-graph is marginalized over it’s port nodes plus the ones it
shares in common, and so on.

The existence of a message passing algorithm for this task is somewhat trivial,
since if we have a cutset it’ll split the graph into trees, for which there is an
exact algorithm. When implementing such an algorithm, just make sure you don’t
marginalize over the same tree twice.

A Exactness of sub-graph partitioned marginalization

A.1 Definitions

Definition 1 (Factor graph). A factor graph G = (F, X)) is a bipartite graph representing a factoriza-
tion of a joint probability distribution over a set of variables X. It consists of:

* A set of variable nodes X = {z1, 2, ..., 2, } with domains X,,.
* A set of factor nodes F' = {¢1, ¢2, ... } where ¢; : Q(O(¢;)) — RT.

* A function © : F — P(X)! that maps from a factor to the subset of variables it’s dependent
on.

Additionally, providing extra arguments to a factor doesn’t change it’s output:
¢(x) = dy) s w € UX),y € UXUY)

Definition 2 (Instantiation). An instantiation is a mapping from a set of variables X to one variable in
each one’s domain. The function {2 returns a set of all possible instantiations given a set of variables.

QY)={w: (MW eY,w(y) € X)), (VS CY :w[S] ={w(s) : s € S}}
An instantiation can map a variable to it’s assigned value w(y), or map a set of variables to their
assigned values w(.S)

Definition 3 (Factorized joint distribution). Given a factor graph G, the joint distribution over X is
given by Pg : Q(X) — [0, 1] where:

'where P(X) is the power set of X
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bo(a) = [] o()

PpEF

Z= > %)

zeQ(X)
Pg(z) = ®c(v)/Z

25 The behavior when provided extra arguments is the same for a single factor:

26 Proof. Fory € Q(X UY),z € Q(X)

@G x
= Pg(z)
27 Definition 4 (Marginal distribution). Given a subset of variables A C X the marginal distribution of
28 A is defined as:

@ZJG,A(a) = Z (I)G(l‘ U (1)

TEQ(X\A)

Z= % dgala)

a€N(A)
pc.ala) =(a)/Z
29 where a € Q(A)

30 A.2 Sub-graph factorization

st A.2.1 Sub-graphs and near-disjoint-ness

32 Definition 5 (Sub-graph of a factor graph). A sub-graph G = (X, F) of a factor graph G = (X, F)
33 is a factor graph formed by a subset of variables X C X and a subset of factors F' C F, such that
34 every factor in F' is defined only on variables from X .

35 Definition 6 (Near-disjoint sub-graphs). A collection of sub-graphs {G; = (X;, F})}; of G is
36 near-disjoint w.r.t. A if:

37 The factor sets partition F. The sets of variables X; may share variables in A, but are otherwise
38 disjoint
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A.2.2 Sub-graph factorization

Lemma 1 (Sub-Graph Joint Distribution Factorization). Suppose G = (X, F) is a factor graph
and {G; = (X, F})}; is a collection of near-disjoint sub-graphs partitioning F'. Then the joint
distribution can be factorized:

o) = [ ¢()

$eF

= H H #(z) (assoc. & comm. mul.)
i geR;

=[] ®¢. (@) (Def. 3)

7 = Z ()

rzeX
Pa(x) = a(x)/Z
A.2.3 Marginalization with near-disjoint sub-graphs

Lemma 2 (Generalized Distributive Law [1]). Let (,> ,[]) be a commutative semiring. Let
{D;}*_, be pairwise—disjoint finite sets and let f; : D; — K. Then

E k
> [Lfi@) =11 D fit=)
(@1,0.0xi) E[1F_, D; =1 i=1 z;,€D;
"sum over the Cartesian product of products" equals "product of the individual sums"
Theorem 1 (Marginal factorization). Given a subset A C X and a factor graph G = (X, F') that
partitions into near-disjoint sub-graphs {G,; = (X;, F})}; that share variables only in A, the marginal
distribution of A can be factorized as:

doala)= Y da(zUa) Def. 4
z€Q(X\A)
= Z H@@i (xUa) Lem. 1
ZEQ(X\A) i
= > J]%a@X]va) Def. 2, 3,6
rEQ(X\A) i

=l > ®a@iua Lem. 2

= H%M(Q) Def. 4

Z =Y vg.ala)

a€EA
pc.ala) =Yg ala)/Z
The key insight is that because the sub-graphs G; are near-disjoint except for A, the joint summation
over X \ A factorizes into independent summations over each X; \ A. Each of these summations

yields a marginal distribution 1), 4(a). Combining these pieces leads to the factorization of the
marginal distribution into a product of sub-graph marginals.

A.2.4 Hierarchical partitioning marginalization

When a suitable partition of GG is not immediately available (i.e., the graph remains connected even
after removing A), introduce a new set of variables P such that for which P U A there is a partitioning
of near-disjoint sub-graphs.
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Definition 7 (Partition). This partition C'is a set of variables that, when conditioned upon (i.e., fixed),
partitions the factor graph into a collection of near-disjoint sub-graphs. Formally, if Q C X, then:

Yg,ala) = Z Ya,auc(aUc).

ceN(C)

The summation of a partition involves marginalizing w.r.t A® over a marginalized distribution
over (AU C)C. Partitions ensure that each sub-graph induced by @ U C' is near-disjoint, allowing
factorization techniques to apply.

Theorem 2 (Hierarchical factorization via partitions). Consider a factor graph G and a chosen
partition C. If conditioning on () U C' makes the sub-graphs near-disjoint, then:

veol@) = > vaquelgUc)
ceQ(C)

For a given partition, the sub-graphs can themselves be partitioned into near-disjoint sub-sub-graphs
with independent partitioners. The partitioners unique to each sub-graph therefor can be summed out
independently for each sub-graph.

Ya.ala) = ch’:i,A(a)
= Hd)a,Auéi (a)
= H Z ¥a, auc, (aUc).

i CECi

The summation ), is where "summing out a sub-graph" comes from

Proof. Applying the previous factorization theorems to each sub-graph yields the factorization into
products of marginals. Introducing additional nested partitions C; for each sub-graph repeats the
argument at a finer level of granularity, leading to hierarchical factorization similar to Anytime Exact
Belief Propagation|2]. O

B Existence of exact message passing sub-graph marginalization algorithm

Definition 8 (Cycle Cutset Conditioning[3]). For any graph there exists a cutset on a factor graph
such that belief propagation with an outer summation on the cutset is exact.

¢G,A(CL) = OCCGA(CL) = Z BPG,CUA(C U a)
ceN(C)

Lemma 3 (Nested Factor Lemma). Marginalizing over a single factor defined as = vg, 4 is
equivalent to ¢, 4

By 1 as so long as the sub-graph marginalizations are exact, there exists an exact super-graph
marginalization.

va.ala) =[] da,.a

It can be shown that marginalizing over a single factor defined as = 9, 4 is equivalent to ¢, 4.
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Theorem 3 (Hierarchical Cutset Conditioning). By 3 there exists an equivalent factor-graph for any
sub-graph partitioning. And by 8 there exists a message passing algorithm for any marginalization
over a factor-graph. Therefor, there exists an exact message passing algorithm between sub-graphs.

Proof by induction.
1. base case is regular cycle cutset conditioning (Def. 8)
2. any sub-graph partitioning can be turned into a sub-graph factor-graph (Lem. 3)

3. the cycle cutset conditioning algorithm can then be applied to the sub-graph factor graph
and to the sub-graph factors.
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